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Vibrational resonance

P S Landa† and P V E McClintock‡
† Department of Physics, Lomonosov Moscow State University, 119899 Moscow, Russia
‡ Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

Received 8 September 2000

Abstract. The effect of a high-frequency force on the response of a bistable system to a low-
frequency signal is considered for both the overdamped and weakly damped cases. It is shown that
the response can be optimized by an appropriate choice of vibration amplitude. This vibrational
resonance displays many analogies to the well known phenomenon of stochastic resonance, but
with the vibrational force filling the role usually played by noise.

Stochastic resonance (SR) [1–3] is commonly said to occur when a weak periodic signal in
a nonlinear system is amplified by an increase in the ambient noise intensity. In this Letter,
we point out that an analogous phenomenon can occur when the noise is replaced by a high-
frequency periodic force†. We will refer to it as vibrational resonance (VR). As we shall see,
there are some interesting distinctions, as well as close analogies, between VR and SR.

SR is usually considered for the simplest possible example of an overdamped bistable
oscillator described by the equation

ẋ + f (x) = A cosωt + ξ(t) (1)

where A cosωt is the weak input signal, f (x) = dU(x)/dx, U(x) is a symmetric double-
well potential (for example, U(x) = −x2/2 + x4/4), ξ(t) is white noise of intensity K , i.e.
〈ξ(t)ξ(t + τ) = Kδ(τ). The response of the system to the input signal can be considered
either in terms of a linear susceptibility [6] or, as here, in terms of an effective stiffness [7].
SR occurs when the susceptibility or stiffness displays a nonmonotonic dependence on noise
intensity, such that the response Q peaks at a particular value Km of the noise intensity K .
The complex amplitude B of the signal component sω(t) at frequency ω may be described by
the linearized equation

iωB + c(A, ω,K)B = A (2)

where c(A, ω,K) is a complex quantity. Its real part cr(A, ω,K)may be treated as an effective
stiffness [7], whereas its imaginary part ci(A, ω,K) is proportional to what is effectively an
additional damping factor. For SR to occur, it is essential that c(A, ω,K) should depend on
the noise intensity K .

It is evident, however, that a change in c(A, ω,K)may be induced, not only by noise, but
also by other kinds of high-frequency force such as, for example, a periodic vibration. Such
a phenomenon would represent another example of a change in the dynamical behaviour

† We use the original definition of SR [4] in terms of signal amplification, rather the later definition [5] in terms of
an enhancement of the signal-to-noise ratio.
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and properties of a nonlinear system induced by high-frequency vibration (see the book
by Blekhman [8]). We first consider this possibility in relation to the overdamped bistable
oscillator

ẋ − x + x3 = A cosωt + C cos�t (3)

i.e. where the white noise ξ(t) of (1) has been replaced by the rapidly oscillating periodic force
C cos�(t) with � � ω. We evaluate the response of the system to the input signal A cosωt
(by analogy with a lock-in amplifier) by calculating the sine and cosine components, Bs and
Bc respectively, of the coordinate variations (output signal), yielding

Bs = 2

nT

nT∫

0

x(t) sinωt dt Bc = 2

nT

nT∫

0

x(t) cosωt dt (4)

where T = 2π/ω and n is an integer. Computing equation (3) and extracting the cosine and
sine constituents of the output signal at frequency ω, we thus find the dependences on C of
both the response amplitude Q = √

B2
s + B2

c /A and the phase shift ψ = − arctan (Bs/Bc) of
the response relative to the input signal. Some results for a fixed value of � = 5 and different
values of A and ω are plotted in figure 1.

It is immediately apparent from figures 1(a) and (b) that the form ofQ(C) is qualitatively
similar to what is seen in SR [1–3]: the responseQ at first increases with increasing amplitude
C of the high-frequency force, but then passes through a maximum and decreases again. The
maxima in Q(C) are in general sharper than are found in the case of SR. The phase shifts
�(C) are also reminiscent of those found in SR [9] but, again, exhibit very much sharper
minima. For both Q(C) and �(C), the positions of the extrema are weakly dependent on A
and ω respectively, as shown in figure 1(c). The mechanism underlying VR can be understood
as a reduction in the effective stiffness of the system induced by the high-frequency force [7],
resulting in amplification of the low-frequency signal. Equivalently, it can be perceived in
terms of changes in the depth of a smoothed auxiliary potential, as discussed earlier [10]
for a quasimonochromatic force: here, signal amplification occurs when the low-frequency
signal is first able to induce inter-well transitions; the nearly discontinuous rise in Q(C) with
increasing C corresponds to the minimum value of C at which the central maximum in the
auxiliary potential can be destroyed at the peak signal values. The amplification decreases
again when the amplitude of the high-frequency vibrational force has increased sufficiently to
annihilate completely the double-well character of the auxiliary potential (and that of the real
potential over most of each forcing period).

There is a clear analogy between SR and VR in the simple overdamped systems (1) and (3)
respectively. We note that other authors have considered the effect of multi-frequency forces
applied to nonlinear oscillators (see e.g. [11, 12]) but, to our knowledge, the phenomenon of
vibrational resonance has not previously been identified or reported.

It is also of interest to establish whether VR arises in underdamped systems. As an
example, we consider the weakly damped bistable oscillator

ẍ + 2δẋ − x + x3 = A cosωt + C cos�t. (5)

One example of a system described by (5) is a pendulum placed between the opposite poles
of a magnet [13]. The change of c(A, ω,C) with increasing amplitude of the high-frequency
vibration means that the effective natural frequency of the oscillator described by equation
(5) has to change too. It follows that the oscillator’s response to the input signal A cosωt
will depend on the amplitude of the high-frequency vibration—analogous to the ‘tuning’ of an
underdamped monostable oscillator to resonance by adjustment of the noise intensity in the
case of SR [14].
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Figure 1. Response of the overdamped system (3) to the weak periodic signal A cosωt , as
influenced by the high-frequency vibrational force C cos�t with � = 5, for different conditions:
(a) the response amplitude Q and corresponding phase shift ψ are plotted as functions of C for
ω = 0.1 with A = 0.025, A = 0.05, A = 0.1 and A = 0.2 (curves 1, 2, 3 and 4, respectively); (b)
as in (a) but for A = 0.1 with ω = 0.01, ω = 0.05, ω = 0.1, ω = 0.2 and ω = 0.3 (curves 1, 2,
3, 4 and 5, respectively); (c) plots of the characteristic vibration amplitudes Cm corresponding to
maxima in Q(C) as functions of the signal amplitude A (left) and ω (right)

Numerical simulation of equation (5) confirms these ideas. Some typical results are
presented in figure 2 for different values of A and ω. The variations of the response amplitude
Q(C) and phase ψ(C) with the amplitude C of the high-frequency vibrational force shown in
figures 2(a) and (b) are markedly dependent on the signal frequency ω, unlike the case of the
overdamped oscillator (3) (cf figures 1(a) and (b)).

For ω close to the frequency of small free oscillations there are two resonances (figure
2(b)), whereas for smaller ω there is only one resonance (figure 2(a)); the evolution with
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Figure 2. Response of the underdamped system (5) with δ = 0.1 to the weak periodic signal
A cosωt , as influenced by the high-frequency vibrational force C cos�t with � = 9.842, for
different conditions: (a) the response amplitude Q and corresponding phase shift ψ are plotted as
functions of C with ω = 0.5 for A = 0.025, A = 0.05, A = 0.1 and A = 0.15 (curves 1, 2, 3 and
4, respectively); (b) as in (a) but for ω = 1; (c) as in (a) but for A = 0.08, ω = 0.1, ω = 0.25,
ω = 0.5, ω = 1 and ω = 1.4 (curves 1, 2, 3, 4 and 5, respectively); (d) plots of the characteristic
vibration amplitudes Cm corresponding to maxima in Q(C) as functions of signal amplitude A
(left) for ω = 0.5 (curve 1) and ω = 1 (curves 2 and 3), and as functions of ω (right)
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Figure 3. Dependences of the response amplitudeQ and phase shiftψ onω for δ = 0.1,� = 9.842,
A = 0.05: (a) for vibration amplitudes C = 0, C = 25, C = 40 and C = 60 (curves 1, 2, 3 and 4,
respectively); (b) forC = 80, C = 100, C = 120 andC = 140 (curves 1, 2, 3 and 4, respectively);
(c) plot of the resonance frequency ωr as a function of C

ω is seen more clearly in figure2(c) where a set of curves is plotted for different ω at fixed
amplitude A. This phenomenon is attributable to the ‘tuning’ of two different oscillatory
processes: oscillations inside an individual well, and those involving jumps between wells.
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If the signal frequency is too far from the intra-well free resonance, the intra-well oscillation
cannot be brought into resonance by the high-frequency vibration, and so only one maximum
ofQ(C) is observed. Again, such behaviour is very similar to the case of stochastic resonance
in a weakly damped bistable oscillator [7].

Figures 3(a) and (b) illustrate the resonant dependences of the response Q(ω) and phase
shiftψ(ω) on ω for a fixed value ofA and different values of C. In contrast to the overdamped
oscillator (3), for a weakly damped oscillator these dependences are resonant in character, just
as reported earlier for SR in the underdamped monostable oscillator [14]. As C increases, the
resonant frequency at first decreases, but then increases again (see figure 3(c). Thus, we can
control the resonant frequency ωr by changing the amplitude of the high-frequency vibration.

In conclusion, we have shown that the phenomenon of vibrational resonance, in which a
weak periodic signal can be optimally amplified by the application of high-frequency periodic
force of appropriate amplitude, can occur in both overdamped and underdamped nonlinear
oscillators. It can be perceived as a form of stochastic resonance in which the noise has been
replaced by a high-frequency periodic force.

We acknowledge valuable discussions with V I Babitsky, I I Blekhman, M I Dykman, R
Mannella and S M Soskin. The work was supported in part by the Science and Engineering
Research Council.
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